Real Analysis I

Examination I

Total Score : 130

- (1) Let $\{x_n\}$ be a bounded sequence of real numbers.
 - (i) (5%) State the following definitions respectively : a cluster point of $\{x_n\}$, $\limsup x_n$, and $\liminf x_n$.
 - (ii) (5%) Show that $\limsup x_n$ and $\liminf x_n$ are the largest and smallest cluster points of the sequence $\{x_n\}$.
- (2) (i) (5%) State the following definitions respectively : the exterior measure, measurable sets, the Lebesgue measure, and σ-algebra.
 - (ii) (10%) Let

$$\mathcal{M} = \{ E \subset \mathbf{R}^d : E \text{ is a measurable set} \}.$$

Prove that \mathcal{M} is a σ -algebra.

- (iii) (5%) Suppose E is a measurable subset of \mathbf{R}^d . Prove that for any $\varepsilon > 0$, there exists a closed set F with $F \subset E$ and $m(E F) < \varepsilon$.
- (3) (i) (5%) State the following definitions respectively : the measurable function, characteristic function, step function, and simple function.
 - (ii) (15%) Suppose f is measurable on \mathbf{R}^d . Prove that there exists a sequence of step functions $\{\psi_k\}_{k=1}^{\infty}$ that converges pointwise to f(x) for almost every x.
- (4) (20%) State and prove the theorems related to Littlewood's three principles respectively (i.e., Theorem 3.4(iv), Egorov's and Lusin's Theorems in the textbook).
- (5) (10%) Construct a non-measurable set in [0, 1].
- (6) (10%) Suppose A ⊂ E ⊂ B, where A and B are measurable sets of finite measure. Prove that if m(A) = m(B), then E is measurable.
- (7) Let $\mathcal{C} \subset [0,1]$ be the Cantor set constructed in the textbook (removing the interior of the middle third from each remaining interval at each stage).

- (i) (5%) Prove that C is totally disconnected, i.e., given two distinct points $x, y \in C$, there is a point $z \notin C$ that lies between x and y.
- (ii) (5%) Prove that C is perfect, i.e., C is closed and has no isolated points.
- (8) (The Borel-Cantelli lemma) Suppose $\{E_k\}_{k=1}^{\infty}$ is a countable family of measurable subsets of \mathbf{R}^d and that

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Let

 $E = \{ x \in \mathbf{R}^d : x \in E_k \text{ for infinitely many } k \}.$

(i) (5%) Show that E is measurable, and

$$E = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} E_k.$$

- (ii) (5%) Prove m(E) = 0.
- (9) Suppose E is a given set, and \mathcal{O}_n is the open set defined by

$$\mathcal{O}_n = \{ x : d(x, E) < 1/n \}.$$

- (i) (5%) Show that if E is compact, then $m(E) = \lim_{n \to \infty} m(\mathcal{O}_n)$.
- (ii) (5%) Does the conclusion in (i) also hold for E closed but unbounded? Explain your answer.
- (10) (10%) Prove that $(a + b)^{\gamma} \ge a^{\gamma} + b^{\gamma}$, where $\gamma \ge 1$ and $a, b \ge 0$. Also, show that the reverse inequality holds when $0 \le \gamma \le 1$.